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The conformational statistics of ribbonlike polymers possessing bending and twist rigidity are considered on
the basis of a lattice model of directed self-correlated walks. It was assumed that local properties of the
ribbonlike chain are strongly anisotropic: bending is possible only in the plane of the ribbon �the orientation of
this plane can vary due to twist�. The generating function for the distribution of a chain segment that is
non-Gaussian is constructed. It is shown that in the isotropic environment the twist degree of freedom has no
effect on the state of such macromolecules as a whole, and the consideration of rigidity alone in bending results
in correct statistical features of a polymer chain. This model is suitable in accounting for the twist degree of
freedom in the system with broken rotary symmetry.
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I. INTRODUCTION

For many polymer systems, the simplest review is too
inaccurate and does not take into account the important local
properties of macromolecules. Hence, the polyethylene
chains have the ribbonlike structure which originates from
the trans-gauche isomerism �1,2�. The concept of the trans-
gauche isomerism requires considering the trimers and al-
lows one to calculate some features of the macromolecule
�low-order moments of distribution, for example�. At the
same time, the construction of the full distribution function
in the framework of this model is a very difficult and, per-
haps, an unsolvable problem.

However, consideration of the effective chain being aniso-
tropic in cross section can somewhat simplify the problem.
The geometric anisotropy of such macromolecules results, in
particular, in an anisotropy of bending rigidity of the poly-
mer chain and in an appearance of an additional degree of
freedom. Indeed, each monomer of such molecules is to be
thought of as a three-axial ellipsoid but not as a cylinder.
That means that the conformational state of the molecules
being anisotropic in cross sections is determined by relative
orientations of two axes of the neighboring monomers. The
relative orientation of the neighboring monomers along the
molecule contour corresponds to the bending of a chain, and
the relative orientation of the neighboring monomers in the
perpendicular plane determines the twist corresponding to an
additional degree of freedom. Moreover, the possibilities of
the bends of a molecule in the directions of the second and
the third axes are not equal: the probability of the bend in
direction of the smallest axis is much higher than in perpen-
dicular direction. Therefore, the flexural stiffness of such a
chain is also anisotropic. If the anisotropy of macromol-
ecules is strong enough, these polymers are referred to as

ribbonlike polymers. The polymers of such a type are the
subject of our analyses.1

It is clear that the introduced ellipsoids �chain units� are
not elementary objects and contain several bonds, like trim-
ers in the Flory approach. However, the anisotropy of these
ellipsoids takes into account their internal structure, omitting
the details as being of no importance. In this connection the
polymer units are to be characterized by an additional param-
eter, called “polarization.” Such a representation allows one
to classify the degrees of freedom of a chain into two types:
bending and twisting ones; thus, the polarization of mono-
mers is related to the rotational degree of freedom, although
the possibility of bend depends on the polarization of the
chain.

All the abovementioned circumstances can be taken into
account in the context of the discrete semi phenomenological
model of directed self-correlated walks2 on the regular lattice
�DSCW� �6–8�. This model has been successfully applied to
the description of conformational statistics of polymer chains
with arbitrary rigidity and length �9–14�. The discrete char-
acter of the model allows one to consider the large local
bends of a macromolecule that correspond to trans-gauche
transitions, while in continuous models only small bends cor-
responding to the fluctuations of a chain are possible.

II. LATTICE MODEL OF A POLYMER CHAIN
WITH INTERNAL DEGREES OF FREEDOM

In order to get the correct effective description of the
ribbonlike macromolecule as a linear one possessing some
internal structure, let us consider the placing of a polymer
chain on a regular cubic lattice. In doing so, a monomer unit
is presented as a plane zigzag �see Fig. 1�a��. Each monomer

*Electronic address: arinsta@mail.biu.ac.il

1Note that the concept of ribbon-like polymers can be useful for
description of double-stranded semiflexible proteins, especially
DNA �3–5�.

2In cited papers the appellation “directed self-avoiding walks” is
used, but, in our opinion, “directed self-correlated walks” is more
suitable and corresponds to the physical sense of the problem more
precisely.
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unit includes four bonds. The first and second units can be
rotated at 90° in a plane being perpendicular to the placing
plane, and the orientation of the third and the fourth edges
are fixed. The rotation of the first edge corresponds to chain
bending �see Fig. 1�b�� and the rotation of the second edge
corresponds to a twist of a chain �polarization change� �see
Fig. 1�c��.

Such a description of the structure of a monomer is not
the sole possibility, chain bending can occur as a result of
rotation not only of the first element of the monomer, but
also of the third one, and the chain twist can occur as a result
of rotation of the second bond as well as of the fourth one.
However, such a choice of mobile monomer units results in a
displacement that corresponds to an effective monomer of a
chain and equals the two edges of the lattice, irrespective of
the bending or twist of the chain �or of their absence�. At the
same time, depending on polarization, the bending of a chain
can be realized as follows: bending from a direction x only in
a direction y, from a direction y only in a direction z, and
from a direction z only in a direction x; i.e., according to a
cycle of the right-hand triple of vectors: x→y→z. Another
possible direction of bending is of the left-hand triple of
vectors, x→z→y; i.e., from direction x only in direction z,
from direction z only in direction y, and from direction y

only in direction x. These two types of polarization will be
termed as right-hand �see Fig. 2� and left-hand polarizations
�see Fig. 3�. Note that at each bending of a chain, the chain
polarization changes to the opposite one.

Let us consider random walks of a “particle” on a regular
cubic lattice. The probability of a direction choice at each
following jump depends both on the jump direction and on
the polarization “of the walking particle” at the previous
step. Such random walks correspond to the DSCW model.
The pathway of the particle that performs a random motion
corresponds to conformations of a ribbonlike chain of an
arbitrary rigidity.

Let e�n� be the vector that depends on the jump at the nth
step of a random walk and corresponds to the position of the
nth monomer of the chain. The stiffness and polarization of a
macromolecule are specified by the distribution of condi-
tional probabilities of the direction and polarizability at the
step �n+1� ,e�n+1�, at the given direction and polarization of
the previous step, e�n�. The possibilities are as follows: a
particle may maintain the direction �with probability �1−���;
or move in a perpendicular direction that is permissible by
polarization �with probability ��. Analogously, let the prob-
ability maintain a given polarization be �1−�� and the prob-
ability to change polarization be �. In general, these prob-
abilities depend both on polymer type and external
conditions �for example, on the temperature� but these de-
pendences are of no importance for our goals, and param-
eters � and � are taken as constants.

After the enumeration of the directions on the lattice �see
Fig. 4�, the column vectors of a probability distribution of
moving directions and polarizations of the nth step of the
walk can be introduced as follows:

FIG. 2. The right-hand polarization of a polymer chain. The
bending can be realized only from direction x in direction y, from
direction y in direction z, and from direction z in direction x; i.e.,
according to a cycle of the right-hand triple of vectors: x→y→z.

FIG. 3. The left-hand polarization of a polymer chain. The bend-
ing can be realized only from direction x in direction z, from direc-
tion z in direction y, and from direction y in direction x, i.e., ac-
cording to a cycle of the left-hand triple of vectors: x→z→y.

FIG. 4. The numbering of the directions on the lattice.

FIG. 1. Polymer chain on a regular cubic lattice. The planar
configuration corresponds to the basic conformation �a�. The el-
ementary monomer unit of a chain is marked by solid lines �the
other part of a chain is pictured by dashed lines�. The chain bending
takes place at the turn of edge 1 at 90° in the plane perpendicular to
the previous edge �b�, and the chain twist �polarization change�
occurs at the turn of edge 2 �c�. The placing direction is from left to
right.
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�P�n�� =�
P1�n�
P2�n�

�
P6�n�

	 , �1�

where the elements of a column vector �P�n�� are spinors

Pi�n� = 
Pi
+�n�

Pi
−�n�

� .

The column vectors of a probability distribution at nth

and �n+1�th steps are connected by the transfer-matrix T̂:

�P�n + 1�� = T̂�P�n�� , �2�

where the transfer-matrix T̂ is a 12�12 block matrix

T̂ =�
�1 − ��� 0 1

2��−
1
2��−

1
2��+

1
2��+

0 �1 − ��� 1
2��−

1
2��−

1
2��+

1
2��+

1
2��+

1
2��+ �1 − ��� 0 1

2��−
1
2��−

1
2��+

1
2��+ 0 �1 − ��� 1

2��−
1
2��−

1
2��−

1
2��−

1
2��+

1
2��+ �1 − ��� 0

1
2��−

1
2��−

1
2��+

1
2��+ 0 �1 − ���

	 �3�

and the matrices

� = 
1 − � �

� 1 − �
�, �+ = 
0 0

1 0
�, �− = 
0 1

0 0
�

act also on spinor elements of Pi�n�.
Generally, the arbitrary anisotropy of the bending degree

of freedom can be considered. In this case two parameters of
bending are to be introduced: the probabilities to bend in the
directions being perpendicular ���� and parallel ���� to the
plane of a chain and the matrixes �± in Eq. �3� will have the
form of

�+ =
1

�� + ���

 0 ��

�� 0
�, �− =

1

�� + ���

 0 ��

�� 0
� ,

where ���+�� =��. However, such a generalization results
in no interesting effects and we will restrict our consideration
to the case of the extreme anisotropy ��� =0 and ��=��.

The column vectors of a probability distribution �P�n��
can be represented as the direct product of three column
vectors:

�P�n�� = �p�c��n�� � �p�d��n�� � �p����n�� , �4�

where

�p�c��n�� = �px
�c��n�

py
�c��n�

pz
�c��n�

	
corresponds to the coordinate axes x ,y ,z;

�p�d��n�� = 
p+
�d��n�

p−
�d��n�

�
corresponds to the positive and negative directions along
each coordinate axis, and

�p����n�� = 
p+
����n�

p−
����n�

�
corresponds to the polarization of the nth chain bond.

The transfer-matrix T̂ in this representation has a form

T̂ = � A B− B+

B+ A B−

B− B+ A
	 , �5�

with matrix blocks 4�4: A=I�d� � �1−���, B±=� � ��±,

� =
1

2

1 1

1 1
� =

1

2
�1 1 �
1

1
�, I�d� = 
1 0

0 1
� .

The distribution function of orientation and polarization
of monomers is expressed in terms of the powers of the

matrix T̂, and the spatial distribution function �in Fourier
representation� can be also expressed in terms of the powers

of a matrix q̂T̂ �13,14�:

Ĝ�q,n� = �q̂ · T̂�n−1q̂ , �6�

where q̂ is the diagonal matrix 6�6:

q̂ = �q̃x 0 0

0 q̃y 0

0 0 q̃z
	, q̃x,y,z = 
eiqx,y,z 0

0 e−iqx,y,z
� .
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Unfortunately, the matrix blocks A ,B±, and q̃x,y,z do not
commute and, therefore, the problem of calculation of the
distribution function is reduced to the diagonalization of the
12�12 matrix; i.e., to the solution of an algebraic equation
of the sixth order which, in general, has no analytical solu-
tion. Instead, one can use the method of the generating func-
tion corresponding in the case of a continuous limit to the
Laplace transformation over the argument of the chain
length. This method is commonly used for studies of systems
with a varying number of particles.

III. THE GENERATING FUNCTION FOR THE SPATIAL
DISTRIBUTION OF A CHAIN

Now, we will calculate the matrix generating function as

G̃��,q� = 

n=0

�

�nĜ�q,n� = 1 + 

n=0

�

��q̂ · T̂�n�q̂ , �7�

which is to be averaged over the states of the extreme mono-
mers of a chain:

K��,q� =
1

12
�G̃��,n�� = 1 +

1

12

n=0

�

���q̂ · T̂�n�q̂� , �8�

where brackets �¯� mean the sum of all matrix elements.

Let us present T̂ as a quasidiagonal block matrix:

T̂ = � A B− 0

B+ A 0

0 0 A
	 + � 0 0 B+

0 0 B−

B− B+ 0
	

= 
T̂2 0

0 A
� + 
 0 B

Bt 0
� , �9�

where

T̂2 = 
 A B−

B+ A
�, B = 
B+

B−
�, Bt = �B− B+� .

Such a representation of the transfer-matrix T̂ allows one
to reduce the problem to calculation of the two- and one-
dimensional generating functions. In fact, using Eq. �9�, the

generating function G̃�� ,q� can be represented as

G̃��,q� = 

k=0

� �

n=0

� ��q̂
T̂2 0

0 A
��n

�q̂
 0 B

Bt 0
��k

�

n=0

� ��q̂
T̂2 0

0 A
��n

�q̂

= 

k=0

� �
 0 G̃2��,qx,qy�B

G̃1��,qz�Bt 0
��k

�
G̃2��,qx,qy� 0

0 G̃1��,qz�
� , �10�

where

G̃1��,qz� = 

n=0

�

��q̃zA�n�q̃z,

G̃2��,qx,qy� = 

n=0

�

��q̂2T̂2�n�q̂2, q̂2 = 
q̃x 0

0 q̃y
� .

Taking into account the structure of the matrixes B± �more
exactly, of the matrix �� the averaging over indexes corre-
sponding to the positive and negative directions along
each coordinate axis of the generating function �10� is appro-
priate. This averaging reduces the dimension of all matrixes
by half; i.e., the two-dimensional generating function will be
the 4�4 matrix and the one-dimensional generating function
will be the simplest 2�2 matrix.

G��,q� =
1

2
�1 1 ��d�G̃��,q�
1

1
��d�

= 

k=0

� �
 0 G2��,qx,qy�B
G1��,qz�Bt 0

��k

�
G2��,qx,qy� 0

0 G1��,qz�
� , �11�

where

G2��,q� =
1

2
�1 1 ��d�G̃2��,q�
1

1
��d�

,

G1��,qz� =
1

2
�1 1 ��d�G̃1��,qz�
1

1
��d�

,

B = �
�+

�−
�, Bt = ���− �+� .

Summing singly the odd and even powers of the series in
the Eq. �11�, we get the generating function G�� ,q� in the
form

G��,q� = 

k=0

� �
 0 G2B

G1Bt 0
��2k
 G2 G2BG1

G1BtG2 G1
�

= 
G2 + G2BG0G1BtG2 G2BG0G1

G0G1BtG2 G0G1
� , �12�

where the arguments in the generating functions G1 and G2
are omitted and G0�G0�� ,q� is the 2�2 matrix having a
form

G0��,q� = 

k=0

�

�G1��,qz�BtG2��,qx,qy�B�k

= �I − G1��,qz�BtG2��,qx,qy�B�−1. �13�

The calculation of the generating function G1 reduces to
the summation of a geometric series, and thereafter to calcu-
lation of the 2�2 inverse matrix. As a result, the generating
function G1 gets the form
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G1��,q� = 
a��,q� b��,q�
b��,q� a��,q�

� =
1

2
� ��cos q − �1 − ����

1 − 2�1 − ��� cos q + �1 − ��2�2
1 1

1 1
�

+
��cos q − �1 − ���1 − 2����

1 − 2�1 − ���1 − 2��� cos q + �1 − ��2�1 − 2��2�2
 1 − 1

− 1 1
�� . �14�

The generating function G2 is the 4�4 matrix, and the procedure like that used above for the three-dimensional generating

function is to be applied to its calculation. Representing the matrix T̂2 as

T̂2 = 
 A B−

B+ A
� = 
A 0

0 A
� + 
 0 B−

B+ 0
� , �15�

and repeating the calculations as in Eqs. �10�–�12�, one can get the generating function G2 in the form containing only
one-dimensional generating function G1:

G2��,qx,qy� = 
 G0
�����,qx,qy�G1��,qx� G0

�����,qx,qy�G1��,qx���−G1��,qy�
G0

�±���,qx,qy�G1��,qy���+G1��,qx� G0
�±���,qx,qy�G1��,qy�

� , �16�

where

G0
�����,qx,qy� = 


n=0

�

�G1��,qx���−G1��,qy���+�n

= �I − G1��,qx���−G1��,qy���+�−1,

�17�

G0
�±���,qx,qy� = 


n=0

�

�G1��,qy���+G1��,qx���−�n

= �I − G1��,qy���+G1��,qx���−�−1. �18�

Equations �16�–�18� allow one to express the three-
dimensional generating function G�� ,q� �12� by a one-
dimensional one G1�� ,q� �14�. The obtained expressions are
too cumbersome for calculations, but their form can be sim-
plified by means of the procedure of averaging over direc-
tions and polarizations of the both extreme monomers of a
chain.

IV. AVERAGING OVER DIRECTIONS AND
POLARIZATIONS OF BOTH EXTREME MONOMERS

OF A CHAIN

The symmetry of the problem in question results, in
particular, in the fact that only three independent elements
are contained in the 3�3 matrix of the generating function
G�� ,q� having, in effect, the following form:

G��,q� = �G11 G12 G13

G13 G11 G12

G12 G13 G11
	 .

The element G11 corresponds to the relative parallel orienta-
tion of the extreme monomers of a chain whereas the ele-

ments G12 and G13 correspond to their relative perpendicular
orientations �two relative perpendicular orientations: the
right-hand and the left-hand orientations are possibly due to
the polarization of the monomers�. After averaging over po-
larizations of the extreme monomers of a chain, full rota-
tional symmetry will be restored and the matrix of the gen-
erating function contains only two independent elements
corresponding to the relative parallel �diagonal elements� and
perpendicular �nondiagonal elements� orientations of the ex-
treme monomers of a chain.

At first glance, the averaging of the generating function
�12� seemingly gives no simplifications, and results only in
the symmetrization over the arguments qx,y,z. However, if the
continuous approximation is used �i.e., cos q�1−q2 /2� this
symmetrization allows one to simplify the equations, replac-
ing each of the arguments qx,y,z �components of the vector q�
of the one-dimensional generating function G1�� ,qx,y,z� by
the scalar q=�q2 /3=��qx

2+qy
2+qz

2� /3. Thereafter, the aver-
aged generating function has the form

K��,q� � K��,q� =
1

2
��I + �1 1 �G2��,q�B�G0��,q�G1��,q�� ,

�19�

where the fact that G0�� ,q�G1�� ,q�=G1�� ,q�G0�� ,q� is
taken into account, q=��qx

2+qy
2+qz

2� /3, the brackets �¯�
mean the sum of all matrix elements corresponding to the
polarizations of the extreme monomers of a chain, the one-
dimensional generating function G1�� ,q� is defined by Eq.

�14�, and the averaged generating functions G̃2�� ,q�, and
G0

�x,y�,�y,x��� ,q� are as follows:

G0��,q� = �I − G1��,q�BtG̃2��,q�B�−1, �20�
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G̃2��,q� = 
 G0
�����,qx,qy�G1��,qx� G0

�����,qx,qy�G1��,qx���−G1��,qy�
G0

�±���,qx,qy�G1��,qy���+G1��,qx� G0
�±���,qx,qy�G1��,qy�

� , �21�

G0
�����,q� = �I − G1��,q���−G1��,q���+�−1, �22�

G0
�±���,q� = �I − G1��,q���+G1��,q���−�−1

= 
0 1

1 0
� · G0

�����,q� · 
0 1

1 0
� . �23�

Using the features of the structure of the matrices G0�� ,q�
and G1�� ,q�, which have a symmetric form


A B

B A
� ,

eq. �19� for the generating function K�� ,q� can be simplified
and the final equation for the averaged generating function is
as follows:

K��,q� =
��cos q − �1 − ����

1 − �2 − ��� cos q + �1 − ���2 . �24�

The last equation coincides exactly with the generating
function for the semiflexible linear polymer chain �9–14�.
This means that the twist degree of freedom has no effect on
the statistics of the macromolecules in question. At first
glance, this outcome seems unexpected but this fact actually
reflects the rotational symmetry of the problem. At the same
time, the local properties of the chain in question �the distri-
bution of orientations, for example� depend on the twist pa-
rameter. Indeed, the diagonal �d� and nondiagonal �n−d� ma-
trix elements of the generating function �12� after replacing
all arguments qx,y,z by the one q=��qx

2+qy
2+qz

2� /3 and after
averaging over polarizations of the extreme monomers of a
chain have the following form containing the twist parameter
� as

Kd��,q� =
1

2
�G0��,q�G1��,q��

=
�a + b��1 − �a�

�1 − ��a + b���1 + �b − ��a − b���a + b��
,

�25�

Kn−d��,q� =
1

2
��1 0 �G̃2��,q�B · G0��,q�G1��,q��

=
1

2
��0 1 �G̃2��,q�B · G0��,q�G1��,q��

=
1

2

�a + b����a + b� − ��a − b���a + b��
�1 − ��a + b���1 + �b − ��a − b���a + b��

,

�26�

where the functions a�a�� ,q� and b�b�� ,q� are the matrix
elements of the one-dimensional generating function

G1�� ,q� �14� and their combinations a−b and a+b have a
simple structure:

a��,q� − b��,q�

=
��cos q − �1 − ���1 − 2����

1 − 2�1 − ���1 − 2��� cos q + �1 − ��2�1 − 2��2�2 ,

�27�

a��,q� + b��,q� =
��cos q − �1 − ����

1 − 2�1 − ��� cos q + �1 − ��2�2 .

�28�

The first of them Kd�� ,q� �25� corresponds to the polymer
chain, the extreme monomers of which are parallel and the
second one Kn−d�� ,q� �26�, corresponds to the polymer chain
the extreme monomers of which are perpendicular to each
other.

V. CONCLUSION

The analysis carried out demonstrated that the rotational
degree of freedom of the ribbonlike macromolecule is of no
importance in the isotropic polymer system, in the polymer
melt, or solution, for example. The reason for this outcome is
related to the symmetry of the system. That means that the
approximation of the linear semiflexible macromolecule con-
taining no internal degrees of freedom is applicable to rib-
bonlike polymers in the isotropic environment and the con-
formational statistics of such a polymer can be described by
the following distribution function �in a Fourier representa-
tion� which can be obtained by means of the generating func-
tion �24� �9–14�:

K�l,p� =
1 + E

2E
exp�−

��1 − E�l
2�1 − ��l0

�
−

1 + E

2E
exp�−

��1 + E�l
2�1 − ��l0

� , �29�

where E=�1− l0
2p22�2−���1−�� /3�2 and l0 is the scale of

one monomer of a chain.
This fact does not mean that the rotational degree of free-

dom generally is of no importance. For example, the state of
short molecules containing a limited number of monomers
depends on the rotational mobility of links even in the iso-
tropic environment. Indeed, if this rotational mobility is ex-
tremely low, such a chain is located in a plane and is de-
scribed by two-dimensional distribution. The third dimension
becomes important when increasing the length of a chain or
when increasing its rotational mobility �in both cases the
correlation length of polarization becomes less than the chain
length�. With the increasing of the chain length the influence
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of the rotational degree of freedom decreases and, finally,
disappears. From a mathematical point of view, such influ-
ence of the rotational degree of freedom on the state of poly-
mer molecules is related to the fact that the continuous ap-
proximation is inapplicable for short chains. For this reason,
the substitution qx,y,z→q=��qx

2+qy
2+qz

2� /3 is impossible and
the generating function is to be defined by the equation �12�
in combination with Eqs. �13�, �14�, and �16�–�18�. As a
result, the dependence of the generating function on the twist
parameter will be retained even for the isotropic case. If
required, the necessary calculations can be performed, in
spite of the fact that the resulting expressions are very un-
wieldy ones.

Finally, let us regard a special situation that is very im-
portant from a physical point of view. It is clear that the
rotational degree of freedom of the ribbonlike polymer
chains can manifest itself in anisotropic systems. However,
even in the isotropic system the local intermolecular interac-
tions of the ribbonlike chains result in local anisotropy. Un-
der certain conditions this local anisotropy can lead to phase

transition, and global anisotropy springs up in the system.
Inasmuch as in the anisotropic environment the rotational
degree of freedom will influence the conformational state of
the macromolecules in question, the conditions of the phase
transition in the anisotropic phase must depend on the twist
parameter. In doing so, such an influence has to increase for
short polymer chains, whereas this influence can be negligi-
bly small for the infinitely long molecules as a result of
averaging. Such a situation can take place in the rotator
phase of some polymers, and in our opinion the proposed
model is suitable for explaining some features of this phe-
nomenon �15�. This problem requires additional study and
will be discussed in a special article in the near future.
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